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Abstract

An adequate treatment of the thermal radiation heat transfer mechanism is essential to a mathematical model of
the combustion process or to design a combustion device. Predictive tools using ¯ux models, such as the discrete

transfer method, the discrete ordinates method and the spherical harmonics method, that solve the radiative heat
transfer equation, require as input the values of the absorption and scattering coe�cients of the participating media.
Such coe�cients must be evaluated in an expedite fashion since computational ¯uid dynamics and radiative ¯ux
models are extremely time demanding by themselves. In this work, a curve ®tting approach to the Mie theory is

used to evaluate the above-mentioned coe�cients for intermediate and large particles, ensuring a compromise
between accuracy and computational economy. The same coe�cients for small particles are calculated using power
series to represent the Mie coe�cients accurately and economically. Predictions with the present models were

performed for soot, carbon particles and ¯y ash and are presented herein. The results have proved that the models
proposed in this work are computationally much faster than the prohibitive Mie theory calculations: reductions in
computing times as high as three-hundred fold. Additionally, the referred models allow for the achievement of very

accurate results: a relative error between approximated values and the corresponding Mie exact solution almost
always below 5%. # 1999 Elsevier Science Ltd. All rights reserved.

1. Introduction

Radiation is undoubtedly the dominant heat transfer

mechanism within the vast majority of industrial com-

bustion systems. The ¯ow and the temperature ®elds,

together with the species concentrations inside combus-

tors, are most in¯uenced by the rate of radiant energy

exchanged between the ¯ame and the enclosing walls.

Hence, an accurate prediction of the heat transferred

by radiation is a key issue in the design and optimis-

ation of the operating conditions of industrial combus-

tion chambers. For the achievement of such accurate

predictions the values of the absorption and scattering

coe�cients of the participating media play a determi-

nant role.

In addition to radiation, the combustor performance

is characterised by a two-phase (coal and oil ®red com-

bustors) or by a single-phase (gas ®red combustors)

turbulent combusting ¯ow. If radiation is a determi-

nant heat transfer mechanism, requiring therefore its

modelling, the choice of the model has to be e�ected

accordingly to the ¯uid ¯ow modelling approach.

Many radiation models have been developed for

emitting, absorbing and scattering media [1], most of

them being based on the solution of the radiative heat

International Journal of Heat and Mass Transfer 42 (1999) 4535±4548

0017-9310/99/$ - see front matter # 1999 Elsevier Science Ltd. All rights reserved.

PII: S0017-9310(99 )00106-4

www.elsevier.com/locate/ijhmt

* Corresponding author. Tel.: +351-1-841-7378; fax: +351-

1-847-5545.

E-mail address: viriato@navier.ist.utl.pt (V. SemiaÄ o)



transfer equation (RHTE). Some of those models are

not recommended for coupling with combusting ¯uid

¯ow modelling, despite their recognised accuracy.

These are the cases of the zonal method [2] and the

Monte Carlo method [3], that require much too long

computing times and make recourse to numerical tech-

niques very di�erent from those used in ¯uid ¯ow pre-

dictions.

All the other commonly used models make recourse

to the ¯ux method that discretises the space into a

®nite number of solid angles and assume the heat ¯ux

as constant within each solid angle in order to elimin-

ate the directional dependence of the RHTE. The use

of the third order approximation (P3) of the spherical

harmonics method (Pn models, n being the method ap-

proximation order) has produced accurate results for

two-dimensional geometries, both for Cartesian co-

ordinates [4] and cylindrical co-ordinatesÐaxially sym-

metric geometries [5], as well as for three-dimensional

geometries in Cartesian co-ordinates [6]. However, the

method has proved to be mathematically involved to

obtain accurate predictions.

Two more attractive algorithms for coupling with

ordinary ¯uid ¯ow predictive tools, the discrete ordi-

nates method [7] and the discrete transfer method [8],

have produced very accurate results in solving the

RHTE [8±14].

The three previous methods require as input the gas

and the solid particles absorption coe�cients, the par-

ticles scattering coe�cient and, for anisotropic scatter-

ing, the phase function of the participating media.

Furthermore, it was shown by [5] that the radiative

heat ¯ux distribution is rather sensitive to the variation

of the absorption and scattering coe�cients of the par-

ticipating media. Hence, the accuracy in calculating the

previous coe�cients will determine the precision of the
predicted radiation heat ¯uxes.

The values for the above-mentioned coe�cients

could be evaluated by the use of Mie theory [15].
However, even making recourse to e�cient algorithms

and high-speed computers, its use in numerical predic-
tive tools is unimaginable, due to its mathematical

involvement and prohibitive computational time
requirements. An accurate and economic modelling is,

therefore, mandatory.

Even for gaseous ¯ames, most of the current work
on the modelling of industrial combustion chambers

using computational ¯uid dynamics (CFD) codes
makes recourse to polynomial approximations to pre-

dict the total radiative properties of the absorbing
media. The reason for this stems from the necessity to

minimise the time required for the computation of
those properties. Those models reached an unpaired

success in the numerical modelling of industrial ¯ames

due both to their simplicity and reasonable accuracy to
simulate the properties of gaseous combustion prod-

ucts at common temperatures and pressures operating
ranges of real life furnaces. However, increasing inter-

est shown by industrials together with the need to
comply with di�erent operating conditions and model-

ling (e.g. gas turbines or kinetically controlled combus-
tion) require more general models to predict the

radiative properties of gaseous absorbing media. The
exponential wide band model appears to be a promis-

ing approach. However, it is recognised that even this
model is much too time demanding for inclusion in

this kind of simulation, the result being the rise of a
wide variety of simpli®ed approaches that resort to

curve ®tting and other empirical methods [16±20].

Should the combustion chamber be ®red with oil or
coal, the necessity for the calculation of the solid

Nomenclature

Symbols
Ai ith weighing factor for Gauss±Laguerre in-

tegration

Ci(m) curve ®tting coe�cients (i= 1, 7) for Eqs.
(11a) and (11b)

D diameter [m]

D 2
20 mean quadratic diameter [m2]

k extinction/scattering coe�cient [mÿ1]
L asymptotic limit of Q when x41
L a

n Laguerre polynomial of order n
m complex refractive index
N(D ) disperse phase size distribution [mÿ1]
N0 number of particles per unit volume [mÿ3]

p shape parameter of the size distribution
q shape parameter of the size distribution
Q extinction/scattering e�ciency factor

x size parameter
zi ith zero of Laguerre polynomial
E characteristic value of x for curve ®tting

Subscripts
c characteristic value
e extinction
s scattering
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phase scattering/extinction properties with recourse to

extremely expeditious and simultaneously accurate
models will be even more mandatory.
This concern with the computational time require-

ments is more than legitimate. Indeed, if radiation cal-
culations are to be coupled with the ®nite volume

approach for CFD computations the extinction/scatter-
ing coe�cients will vary for each iteration, which
causes a variation of the gas composition, particles

type and size distribution at each control volume
covering the combustion chamber physical domain.
Additionally, the control volumes temperatures also

changes within the iterative procedure causing a corre-
sponding change in the dominating radiative wave-

length, in turn responsible for the size parameter value
modi®cation. This will induce a further deviation of
the extinction/scattering coe�cients values, resulting

therefore in the need for evaluation of the discussed
coe�cients for each control volume and CFD iter-
ation. Since CFD/combustion calculations and radia-

tive transfer equations modelling are by themselves
very computer time demanding, there is an absolute

need not to overload the whole simulation with
another highly time demanding calculation. Those
facts explain the necessity of an extremely e�cient al-

gorithm for the calculation of the extinction and scat-
tering coe�cients.
The ultimate objective of the present research e�ort

is the development of an accurate and economic pro-
cedure to evaluate radiative properties of polydisper-

sions, commonly present in combustion chambers, to
feed the RHTE that, in turn, must be coupled with
CFD calculations.

In the present work, models to accurately and econ-
omically approximate the results of the Mie theory

(used herein as a reference solution) for the evaluation
of the absorption and scattering coe�cients for di�er-
ent types of polydisperse solid phase, such as soot, car-

bon particles and ¯y ash, are proposed.
Some authors consider the Mie theory limited for

the radiation heat transfer calculations in practical ap-

plications, such as particle-laden boilers, since it
describes the far-®eld scattering of plane waves inter-

acting with isolated, homogeneous and spherical par-
ticles. This means that particles are assumed to be
independent scatterers. Despite this arguing, Mie the-

ory has proved to be applicable in practical systems
with volume fractions below 0.006 or with a clearance-
to-wavelength ratio above 0.5, as conservatively stated

by [21]. Indeed, [22] presented a less conservative
upper limit value of 0.1 for the volume fraction. In

most particulate combustion systems the volume frac-
tion is below 10ÿ3 and, therefore, Mie theory still
applies. This has been widely supported in the litera-

ture [1,23]. As far as the assumption of spherical par-
ticles is concerned, the work of [21] has stated that

even for non-spherical particles their random orien-

tation in a cloud will produce a similar e�ect to that
of a cloud of spherical particles.
In radiating environments the polydisperse solid

phase is the only responsible media for the scattering
phenomenon, having also a contribution to the radiant

energy absorption/emission. The corresponding coef-
®cients depend on the solid phase concentration, on
the particles size distribution and on the equivalent

coe�cients of a single particle.
Asymptotic approximations of the Mie theory, both

for large (geometrical optics) and small (Rayleigh the-

ory) particles, exist in the literature [15]. However, par-
ticles with an intermediate size lack of a simpli®ed

approach for a general complex refractive index. For a
value close to unity of that parameter, [23] has tuned
an approximation proposed by [15] for the absorption

and scattering coe�cients, that is valid for particles of
intermediate and large sizes.

A di�erent approach to approximate the Mie theory,
followed by [24] and [10], is to resort to curve ®tting.
In the present work the absorption and scattering

coe�cients are calculated by a combination of the pre-
vious approaches. Indeed, a curve ®tting approach is
used for intermediate and large particles, but, in oppo-

sition to the previous works, the values of the absorp-
tion and scattering coe�cients are herein ®xed by the

Mie theory at the origin and by the asymptotic limit at
in®nity. Additionally, for small particles, the above
mentioned coe�cients are calculated from power series

to represent the Mie coe�cients as suggested by [25].
As far as the size distribution of the polydisperse

solid phase is concerned, several functions can be
found in the literature. A possible distribution to be
used for the purpose of the present work is the nor-

malised form of the Nukiyama±Tanasawa function
[21,24]. This normalised distribution is completely
de®ned by three parameters: one related to the size of

the particles and the remaining two to the distribution
shape. For the case of soot and ¯y ash, the experimen-

tal values of [24] and [26] and the theoretical analysis
of [24] have determined the two shape parameters of
the distributions. For the case of cenospheres, consist-

ing of ash and unburnt carbon formed by the liquid-
phase pyrolysis in spray combustion, it is reasonable
to assume that the distribution exhibits a shape similar

to that of the original liquid spray. The theoretical
work of [27] has determined the two shape parameters

of spray distributions and [28] used those parameters
for spray calculations attaining good agreement with
experimental results. The shape parameters for carbon

particles and ¯y ash were empirically set by [24]. In the
present study, the shape parameters used to de®ne the
size distribution of the di�erent types of polydisperse

solid phase were retained from the above mentioned
works.
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2. Analysis and modelling

The monochromatic extinction and scattering coef-
®cients of a polydisperse cloud consisting of spherical
particles are given by the following equation:

ke, s�N�D�,m� � N0
p
4

�1
0

D2N�D�Qe, s�x,m� dD �1�

where ke,s represents the extinction or scattering coef-
®cient, Qe,s is the extinction or scattering e�ciency fac-

tor, m is the complex refractive index, x is the size
parameter given by x=pD/l, l being the wavelength,
N(D ) is the size distribution and N0 is the total num-

ber of particles per unit volume. The absorption coef-
®cient ka can be easily found from ka=keÿks.
The size distribution N(D ) can be adequately rep-

resented by a Nukiyama±Tanasawa or modi®ed

gamma distribution [21,24]. The following normalised
Nukiyama±Tanasawa distribution is always used
herein:

N�D� � qC

�
p� 1

q

�
G
�
p� 1

q

� D p exp�ÿCDq� �2�

where p, q and C are distribution parameters and G(x )
is the gamma function.
De®ning a characteristic diameter Dc as in Eq. (3), it

is possible to rewrite the previous distribution in a
more convenient formÐEq. (4).

Dc �
�
1

C

�1=q

�3�

N�D� � q

DcG
�
p� 1

q

�� D

Dc

� p

exp�ÿ�D=Dc�q� �4�

Substituting Eq. (4) into Eq. (1) and performing an

adequate change of the integration variable, the extinc-
tion and scattering coe�cients become:

ke,s � N0
pD2

20

4

1

G
�
p� 3

q

��1
0

j
p�3
q ÿ1

eÿjQe,s�x cj1=q,m� dj

�5�

In Eq. (5) xc is the size parameter referred to Dc and
D 2

20 is the quadratic mean diameter obtained from the
following de®nition:

Diÿj
ij �

�1
0

DiN�D� dD�1
0

D jN�D� dD
�

G
�
p� 1� i

q

�
G
�
p� 1� j

q

�Diÿj
c �6�

In order to permit its numerical integration at lower
computational costs, so that the present approach is
economically appropriate for radiation predictions, Eq.

(5) is modi®ed, resulting in:

ke,s � N0
pD2

20

4

264Le,s�m� � 1

G
�
p� 3

q

��1
0

j
p�3
q ÿ1

eÿjFe,s�x cj1=q,m� dj
375

�7�

where Le,s(m ) is the asymptotic limit of the extinction

or scattering e�ciency factor Qe,s(x, m ) for large
values of x that can be found in [15]. The function
F(x, m ) appearing in Eq. (7) is de®ned by Eq. (8a) and

has the properties represented by Eqs. (8b) and (8c).

Fe,s�x,m� � Qe,s�x,m� ÿ Le,s�m� �8a�

Fe,s�0,m� � ÿLe,s�m� �8b�

lim
x41Fe,s�x,m� � 0 �8c�

This function as appearing in Eq. (7) poses fewer
mathematical di�culties in integration than Qe,s(x, m )
in Eq. (5). Nevertheless, the integration of Eq. (7) still

has to be performed numerically. Its form strongly
suggests the use of the following Gauss±Laguerre
quadrature formula:�1
0

x a eÿxf �x� dx �
Xn
i�1

Aif �zi � �9�

In this formula zi are the zeros of the generalised
Laguerre polynomial of order n (L a

n (x )) given by Eq.
(10a) and Ai are the weighting factors given by Eq.

(10b)Ðsee [29].

La
n�x� � �xÿ �a� 2nÿ 1��La

nÿ1�x� ÿ �nÿ 1��a� n

ÿ 1�La
nÿ2�x�

La
0�x� � 1, La

1�x� � xÿ aÿ 1 �10a�

Ai � �nÿ 1�!G�n� a�zi
n�n� a��La

nÿ1�zi ��2
�10b�
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Since the value of ( p+ 3)/q appearing in Eq. (7) is
not known beforehand it is necessary to use a quadra-

ture set for a=0 and to include the term j ( p + 3)/q ÿ 1

in the integrand, which will result in an increase of the
number of points required to evaluate the integral with

the desired accuracy.
At this point it is necessary to calculate the function

Fe,s(x, m ). This could be done using the Mie theory,

however, the computational e�ort required for these
calculations would be prohibitive.
An alternative approach is used in this work and

consists of ®nding a new function depending on x, the
coe�cients of which depend on m. Two distinct
alternative approximations, each using seven coef-
®cients Ci(m ), are described by Eqs. (11a) and (11b)

and their accuracy is assessed:

F�x,m�1 C1�m�
1� C2�m�xc3�m�

ÿ L�m� � C1�m� � C6�m�xC7�m�

1� C4�m�xC5�m�

�11a�

F�x,m�1 C1�m�
1� C2�m�xC3�m� ÿ

L�m� � C1�m�
1� C4�m�xC5�m�

cosfC6�m���1� C7�m�x 2�1=2 ÿ 1�g
�11b�

Although Eq. (11b) is more accurate to model near-

real refractive indexes, where resonance peaks appear,
Eq. (11a) is preferred for numerical modelling, because
of its smaller computational e�ort requirements and

better accuracy for refractive indexes with larger
imaginary part.
The coe�cients appearing in Eqs. (11a) and (11b)

can be calculated for each m, through a least square
regression scheme that ®ts these equations to Mie the-
ory, and can be stored as a table for later use, in the
solution of the RHTE coupled with CFD algorithms.

It must be noticed that in some cases Eqs. (11a) and
(11b) become highly inaccurate for small values of x.
In order to overcome this shortcoming it is necessary

to resort to a di�erent approach. For small values of
the non-dimensional size parameter and of the refrac-
tive index the e�ciency factors Qe,s(x, m ) can be satis-

factorily approximated by a power series retaining a
few terms. For example, [25] presented a four-term
expansion in the form:

Qe�x,m� � x�E1�m� � E2�m�x 2 � E3�m�x 3

� E4�m�x 4� �12a�

Qs�x,m� � x 4�S1�m� � S2�m�x 2 � S3�m�x 3

� S4�m�x 4� �12b�

where Ei(m ) and Si(m ) are complex functions that can
be found in the work of [25] and are therefore not

reproduced here.
These equations can be inserted into Eq. (5) and

integrated analytically, yielding:

ke � N0pD2
20

4G
�
p� 3

q

�x c

"
E1�m�G

�
p� 4

q

�

� E2�m�G
�
p� 6

q

�
x 2

c � E3�m�G
�
p� 7

q

�
x 3

c

� E4�m�G
�
p� 8

q

�
x 4

c

#
�13a�

ks � N0pD2
20

4G
�
p� 3

q

�x 4
c

"
S1�m�G

�
p� 7

q

�

� S2�m�G
�
p� 9

q

�
x 2

c

� S3�m�G
�
p� 10

q

�
x 3

c

� S4�m�G
�
p� 11

q

�
x 4

c

#
�13b�

The extent to which Eqs. (13a) and (13b) are accurate
is strongly dependent on the value of both the real and

imaginary parts of the refractive index m. Larger
values of m lead to a sooner departure from Mie the-
ory of the values of ke and ks. It may happen that a

range of the non-dimensional size parameter exists
where none of the three previously proposed approxi-
mations is accurate. In this case, similar expressions to
those represented by Eqs. (13a) and (13b) can be used,

providing the replacement of the parameters E4(m ) or
S4(m ) by E �(E, m ) or S �(E, m )ÐEqs. (14a) and
(14b)Ðwhere E is a value of x that makes Eqs. (11a)

and (11b) su�ciently accurate.

E ��E,m� � L�m� � F�E,m�
E5

ÿ E1

E4
ÿ E2

E2
ÿ E3

E
�14a�

S ��E,m� � L�m� � F�E,m�
E8

ÿ S1

E4
ÿ S2

E2
ÿ S3

E
�14b�

In summary, the approximate solutions to the Mie the-
ory considered in the present work to evaluate the
scattering/extinction coe�cients are as follows.
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1. Approximation 1Ðcalculated through Eqs. (7) and

(11a), the integration being performed using a

Gauss±Laguerre quadrature with 5 points, that

ensures a compromise between accuracy and econ-

omy.

2. Approximation 2Ðcalculated through Eqs. (7) and

(11b), the integration being similarly performed.

3. Approximation 3Ðcalculated through Eqs. (13a)

for extinction or (13b) for scattering.

4. Approximation 4Ðcalculated through Eqs. (13a)

and (14a) for extinction or (13b) and (14b) for scat-

tering, with E=2 and F(E, m ) calculated through Eq.

(11a).

The exact solution is calculated only for comparison

purposes and is obtained from the use of Eq. (5),

where the e�ciency factors are calculated from the

Mie theory and the integration is performed using a

Gauss±Laguerre quadrature with seventy points, which

makes its calculation prohibitively expensive, for in-

clusion in CFD calculations.

3. Case studies, results and discussion

In the present work three di�erent cases are studied
in order to validate the proposed models for distinct
disperse solid phases (¯y ash and carbon particles) and

for di�erent shapes of the Nukiyama±Tanasawa par-
ticle size distribution. Narrow and broad distributions
are obtained by setting di�erent values to the shape

characterising parameters p and q. In each studied
case, both exact and approximate non-dimensional
extinction or scattering coe�cients, de®ned as

k �e,s=4ke,s/pN0D
2
20, are plotted against xc, together

with the relative error of the approximations.

3.1. Case 1: extinction coe�cient for ¯y ash with broad
size distribution

The ®rst case studied in this work (case 1) is charac-
teristic of ¯y ash. The refractive index used (1.5±0.02
i ) is that proposed by [10] and corroborated by [21]

Fig. 1. Comparison of exact and approximate solutions of non-dimensional extinction coe�cient for case 1Ð¯y ash

(m= 1.5ÿ0.02i, p= 1, q= 1).Ðexact solution; wÐapproximation 1; ^Ðapproximation 2.
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and [23] and the distribution shape parameters, p = 1

and q = 1, are those proposed by [24]. For this case

the analysis is focused on the extinction coe�cient.

Fig. 1 depicts the values of the non-dimensional

extinction factors for this case, both for approxi-

mations 1 and 2, compared against the values obtained

from the Mie theory, while Fig. 2 shows the error rela-

tive to the exact solution of those approximations. As

it can be observed from this ®gure the agreement is

very goodÐwithin 5% of the relative errorÐfor values

of xc greater than 4.0. For xc values between 0.25 and

4.0 the agreement is goodÐnot exceeding 15 % of the

relative error. On the other hand, for values of xc
between 4.0 and 20.0, the approximated solution con-

taining the cosine function shows poorer agreement.

Although Eq. (11b) ®ts the values obtained from the

Mie theory more accurately than Eq. (11a), when the

Gauss±Laguerre numerical integration is performed,

and because only ®ve points are used, the presence of

a cosine function in the integrand leads to a less accu-

rate result. As it was foreseen, for values of xc below

0.2 approximations 1 and 2 break down.

The computational time required using approxi-

mation 1, which is recommended for xcr0.25, is 320
times lower than that requested by the exact solution.
In the range of xc values below 0.25, approximations

3 and 4 must be used. As it can be seen from Fig. 3,

for values of xc below 0.1, approximation 3 is excel-
lent, despite its departure from the exact solution for
greater values. Therefore, for xc values between 0.12

and 0.25 approximation 4 proved to be the most accu-
rate.
The values of the constants appearing in Eqs. (11a)

and (11b) used for this case are presented in Table 1.

3.2. Case 2: scattering coe�cient for ¯y ash with
narrow size distribution

The second case (case 2) is similar to the ®rst one as
far as the type of particles is concerned but the size
distribution is modi®ed in order to determine the sensi-

tivity of the results to this parameter and the analysis
is focused on the scattering coe�cient. In this case the
values used for the distribution shape parameters are

Fig. 2. Error analysis for the comparison of exact and approximate solutions of non-dimensional extinction coe�cient for case 1Ð

¯y ash (m = 1.5ÿ0.02i, p= 1, q= 1). q, approximation 1; R, approximation 2.
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p= 4 and q = 4, that correspond to a narrower shape

of the distribution.

Fig. 4 shows the predicted values of the non-dimen-

sional scattering factors using approximations 1 and 2

and their comparison against the Mie theory values,

while Fig. 5 shows the relative error between those ap-

proximations and the exact solution. As for the pre-

vious case, it can be observed from Fig. 5 that the

agreement in the present case is also very goodÐ

within 5.0% of the relative errorÐfor values of xc
greater than 20.0. When compared to case 1 where the

asymptotic limit of the extinction e�ciency is exact,

the present case exhibits a slightly greater relative error

due to the fact that the above mentioned limit value

for scattering is calculated in an approximated fashion.

For xc values between 1.5 and 20.0 the agreement for

both approximations is goodÐnever exceeding 10% of

the relative errorÐalthough approximation 1 reveals a

superior agreement. In this case approximations 1 and

2 break down sooner (xc values below 1.5) than in the

previous case, due to the e�ect of the disperse solid

phase size distribution form, which is narrower ( p= 4

and q = 4).

Approximation 1, that is the one to be used for

Fig. 3. Comparison and error analysis of exact and approximate solutions of non-dimensional extinction coe�cient for case 1Ð¯y

ash (m= 1.5ÿ0.02i, p= 1, q= 1). Ð, exact solution; Q, approximation 3; ^, approximation 4; q, error of approximation 3; ^,

error of approximation 4.

Table 1

Curve ®tting constants for non-dimensional extinction coe�cient (m= 1.5ÿ0.02i )

C1 C2 C3 C4 C5 C6 C7

Equation (11a) 1.3560 0.7415 0.5949 1.5 10ÿ6 9.0326 ÿ1.0125 1.2559

Equation (11b) 1.7974 0.3108 0.9589 0.1825 1.6850 1.6367 0.3722
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xcr1.5, requires a computational time 66 times lower

than that of the exact solution.

For the range of xc values below 1.5, approxi-
mations 3 and 4 have to be used. Fig. 6 con®rms this

as for values of xc below 0.2, approximation 3 is per-

fect, despite its deviation from the exact solution for

greater values. Nevertheless, for values of xc until 0.7

this approximation is the best one although in®rming

from an error going up to 28% (see Fig. 6). For xc
values between 0.7 and 1.5 approximation 4 has

showed to be the most accurate (relative error below

20%).

It could be expectable a larger relative error for the

scattering coe�cient of the broader particle size distri-
bution. However, in the studied cases this was not
observed. The choice of the two cases out of four pre-

sented herein was random, as the di�erences in the
plotted errors of all cases were minimal.
Table 2 displays the values of the constants appear-

ing in Eqs. (11a) and (11b) obtained for this case.

3.3. Case 3: extinction coe�cient for carbon particles

The last case studied herein (case 3) is characteristic

Fig. 4. Comparison of exact and approximate solutions of non-dimensional scattering coe�cient for case 2Ð¯y ash

(m= 1.5ÿ0.02i, p= 4, q= 4). Ð, exact solution; w, approximation 1; ^, approximation 2.

Table 2

Curve ®tting constants for non-dimensional scattering coe�cient (m = 1.5ÿ0.02i )

C1 C2 C3 C4 C5 C6 C7

Equation (11a) 1.1382 0.0636 1.3145 5.4 10ÿ6 8.3323 ÿ0.5313 1.6460

Equation (11b) 2.0121 0.0552 1.5840 0.1033 1.8456 1.5870 0.3931
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of carbon particles. The refractive index used is that

proposed by [10] for soot and corroborated by [21]
and [23] and the distribution shape parameters ( p = 2

and q= 2) are those proposed by [24]. The extinction
coe�cient constitutes in this case the object of analy-

sis.

Non-dimensional extinction factors for this case,
both for approximations 1 and 2, are compared
against the exact values obtained from the Mie theory

in Fig. 7. For this complex refractive index, with a sig-
ni®cant imaginary part, the function F(x, m ) becomes

smoother, that is, the characteristic resonance peaks

vanish. Due to this fact, and as it can be observed

from Fig. 8, that shows the error relative to the exact
solution of approximations 1 and 2, both approxi-

mations are very good. Moreover, the agreement for
approximation 1 is perfectÐ0% of relative errorÐfor

values of xc greater than 3.0. For xc values below 3.0
the agreement is still very goodÐnever exceeding 3%

of the relative error. Hence, approximation 1 is highly
recommendable to be used.

As in the previous cases, approximation 1 for this
case requires a computational time 86 times lower than

that of the exact solution.

Fig. 5. Error analysis for the comparison of exact and approximate solutions of non-dimensional scattering coe�cient for case 2Ð

¯y ash (m = 1.5ÿ0.02i, p= 4, q= 4). q, approximation 1; R, approximation 2.

Table 3

Curve ®tting constants for non-dimensional extinction coe�cient (m= 2.2ÿ1.12i )

C1 C2 C3 C4 C5 C6 C7

Equation (11a) 2.8195 1.1409 0.6865 2.6987 5.9627 ÿ2.9669 0.67055

Equation (11b) 1.5809 0.3294 0.8782 6.2145 3.9506 0 0
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The values of the constants appearing in Eqs.

(11a) and (11b) obtained for this case are depicted in

Table 3.

A better insight of the computational time savings

that can be achieved through the use of the presently

proposed method can be obtained through the obser-

vation of Table 4, which summarises those savings.

4. Conclusions

There is presently a generalized and legitimate con-

cern in the scienti®c community with the compu-

tational time required for radiative properties

calculations for polydispersions, when radiation is to

be coupled with CFD computations in the prediction

of industrial ¯ames, as both are by themselves very

computer time demanding. Therefore, there is an ab-

solute need not to overload the whole simulation with

another highly time demanding calculation, which

explains the necessity of an extremely e�cient algor-

ithm for the calculation of the extinction and scattering

coe�cients.

In the present work accurate and economic approxi-

mations to the Mie theory for the calculation of the

extinction and scattering coe�cients, based on curve

®tting, were proposed. For the sake of accuracy, the

characteristic size parameter xc domain was partitioned

into di�erent zones, a di�erent approach being used in

Fig. 6. Comparison and error analysis of exact and approximate solutions of non-dimensional scattering coe�cient for case 2Ð¯y

ash (m= 1.5ÿ0.02i, p= 4, q= 4). Ð, exact solution; Q, approximation 3; ^, approximation 4; q, error of approximation 3; ^,

error of approximation 4.

Table 4

Computational time savings of approximations 1 and 2 when

compared to Mie theory

Reduction in time Approximation 1 Approximation 2

Case 1 320 256

Case 2 66 53

Case 3 86 69

Average 157 126
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each zone. The proposed curve ®tting complied with

the asymptotic limits of the extinction/scattering coef-
®cients for an isolated particle, besides being more

accurate than any other curve ®tting approximation
known by the authors. The accuracy of the curve ®t-

ting approach was largely improved with the present

formulation for all values of the size parameter
through the use of novel equations which cover a part

of the xc domain where other approximations depart
from the Mie theory.

The precision attained through this procedure was

for almost all the xc domain below 5%. However, for

isolated circumstances of ¯y ash and a value of xc
around 0.7 the error can be as much as 28%.

The models proposed herein showed some sensitivity

to the shape of the disperse solid phase size distri-
bution, being less accurate (28% relative error) when

the distribution was narrower.

When comparing the two proposed curve ®tting
functional forms (approximations 1 and 2), it was clear

that it is not compulsory to model the resonance peaks
through a cosine function, since the additional compu-

tational e�ort demanded by the use of that function is
not compensated in accuracy, some times being even
penalised.

The accuracy achieved and the enormous amount of
CPU time saved, that depending on the particle size
distribution shape can go up to three-hundredfold

when compared with the use of Mie theory, largely jus-
ti®es the incorporation of the present models in predic-
tive tools to be applied to combustion equipment
design and performance.
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Fig. 7. Comparison of exact and approximate solutions of non-dimensional extinction coe�cient for case 3Ðsoot (m= 2.2ÿ1.12i,
p= 2, q= 2). Ð, exact solution; w, approximation 1; ^, approximation 2.
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